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ABSTRACT  

 

In this paper, we shall construct an inventory model with partially backlogged shortage and Poisson 

demand. In the shortage period, we assume that lost sale is dependent on the length of waiting time. 

Under these assumptions, we find the optimal planning and shortage periods such that the expected 

profit per unit time is maximized. Also, we can estimate the optimal expected backordered quantity 

and the expected order quantity.  
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1. INTRODUCTION  
In the past works, there are two types of assumptions are considered in the inventory problems: 

(1) shortage is not permitted and (2) shortage is fully/partially backlogged. The basic EOQ problem 

is the typical one of the first type. On the other hand, many researchers focus on the second type 

problem, e.g. Park (1983) presents an inventory model for situations in which, during the stockout 

period, a fraction b of the demand is backordered and the remaining fraction 1 - b is lost. By defining 

a time-proportional backorder cost and a fixed penalty cost per unit lost, a unimodal objective 

function representing the average annual cost of operating the inventory system is obtained. Ouyang 

et al. (2007) also proposed a periodic review inventory model with partial lostsales to effectively 

increase investment and to reduce the lost-sales rate. Rosenberg (1979) reformulate the cost equation 

for the lot-size model with partial backlogging and the formulation is in terms of fictitious demand 

rate. Chiang (2006) proposed a dynamic programming model for periodic-review systems in which 

a replenishment cycle consists of a number of small periods (each of identical but arbitrary length) 

and holding and shortage costs are charged based on the ending inventory of small periods.  

In the recent years, some researchers discussed the compound Poisson type demand. For 

example, Bijvank and Johansen (2012) develop new models allowing constant lead times of any 

length when demand is compound Poisson. Chen and Chen (2010) consider an inventory problem 

based on the assumption that lost sales depend on the waiting time when the whole period is stockout. 

Axsäter (2007) considers a single-echelon inventory system with a warehouse facing compound 
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Poisson customer demand. Thangam and Uthayakumar (2008) consider a two-level supply chain with 

a number of identical, independent `retailers' at the lower echelon and a single supplier at the upper 

echelon controlled by continuous review inventory policy (R,Q), Each retailer experiences Poisson 

demand with constant transportation times. Bijvank and Vis (2011) also classify the lost-sales 

inventory models in the literature based on the characteristics of the inventory systems and review 

the proposed replenishment policies.  

The situation of shortage occurs frequently in the real world. When the customer faces the 

occurrence of stockout, he may leave and visit another store. It is important to the decision makers, 

because of lost sales will reduce the profit. Therefore, how to estimate the proportion of customers 

will wait for the goods is important. We think the length of waiting time is one of the major factors 

that the customer will decide to wait or leave. In other words, how to decide the suitable length of 

stockout period will maximize the profit is the major concern of the decision maker.  

Therefore, in this article, we shall construct the inventory model based on two assumptions: (1) 

the customer demand follows a Poisson distribution and (2) the lost sales in the shortage period 

depend on the length of waiting time, i.e, the longer the waiting time the lesser the waiting willingness 

of the customer. Under these assumptions, we shall find the optimal (planned) stockout and non-

stockout periods such that the profit per unit time is maximized.  

  

2. MODEL FORMULATION  

To formulate the mathematical model the following notation and assumptions are used 

throughout the article.  

1. k: The setup cost.  

2. v: The unit price.  

3. c: The unit cost of goods.  

4. h: The unit holding cost per unit time.  

5. [0, t]: The planning period.  

6. t: The length of planning period, where t is a decision variable.  

7. :   =Max{0, x}  

8. [0, ]: The time interval we plan to be unshortage, where  is a decision variable.  

Here, we assume the lead time will be constant and, without lost of generality, we let it be equal 

to zero.  

In [0, ], there are two random phenomena should be considered: A. 

: The total demand in the time interval [0, ].  

We assume that  has a Poisson distribution with parameter . Although the total number of 

customers are usually less than or equal to the total demand, there is no price discount in this model. 

Thus, the objective functions will be the same, whether the total number of customers are less than 

or equal to the total demand. Therefore, for the sake of convenience, we assume that the total demand 

will be equal to the total number of customers.  

  

 B.   X: The time that the customer comes to purchase the goods in the time interval [0,  
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]. We say that it is the arrival time of the customer. Here, we also assume that  is the 

purchasing time of the  customers, where i=1, 2, . We also assume that , , , are 

independent and identically distributed with p.d.f. (x)=   

9. [  , t]: The time interval we plan to be shortage, where   [0, t].  

In [ , t], there are three random phenomena should be considered:  

A. : The total demand in the time interval [ , t];  has a Poisson distribution with 

parameter (  ).  

B. Y: The arrival time of the customer who comes to purchase the goods in the time interval  

[ , t].   

Since the period where stock-outs occur, so when the customer comes at time y, y [  ,t], then he must 

wait until t to get the goods. The waiting willingness of the customer depends on the length of waiting 

time. The larger the waiting time is, the lesser the waiting willingness or possibility. When t is given 

and the customers arrive at time y, the proportion of them will wait until t can be obtained by the 

historical data. In other words, the empirical distribution of the customer's waiting willingness can 

be obtained by the past experiences. Suppose that it follows a probability distribution and its 

corresponding random variable is as follows: C. W: The time that the customer is willing to wait.  

Both Y and W are random variables with joint p.d.f. (y,w), where   y  t and w  0. And, the 

marginal p.d.f. of Y and W are (y) and (w), respectively. Here we shall assume that Y and  

W are independent and Y is uniformly distributed on [  , t], i.e., (y) =  ,  y t, and  

E[W] = dw.       

  In the selling period [0, :  

1. Expected total holding cost E.H.:  

Since  is the purchasing time of the  customers, it means that the length of holding time for the 

 unit of goods is . Hence, the total length of holding time for  units of goods is then   

 S= +  + +  .  

The distribution of S is the so-called compound Poisson distribution with parameter . Since 

the holding cost per unit time is h, therefore the total holding cost is , and the expected total 

holding cost is given by  

E.H. = .                                          (1)  

2. Expected total purchasing cost E.P.:  

Since the total demand is , so the total purchasing cost is  , and the expected total purchasing 

cost is                 

E.P. = .                                                    (2)  

3. Expected total revenue E.R.:  

Since the total demand is , so the total revenue is  , and the expected total revenue is  

E.R.= .                                                   (3)  

  In the stockout period [ , t]:  

If the customer arrives at time , then the length of waiting time is . The probability that 

the customer will decide to wait is then given by   

,  
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which is the conditional probability that the customer is willing to wait to purchase the goods, given 

that he arrives at time y.  

Thus, the unconditional probability that the customer arrives in the time interval [ , t] and will wait 

to purchase the goods is  

       

Since Y and W are independent, and , so  

  

Since the total number of customers arrive in [ , t] is , so the proportion of customers will wait 

until t is then . Furthermore, we know that  is Poisson distribution with parameter  

(  ) and the unit profit is (  ), so the expected total profit is (  )  ( ), i.e.,  

                                                       (4)  

From (1), (2), (3), (4) and setup cost k, the expected total profit is  

    

Therefore, the expected profit per unit time is then  

                                                         (5)  

3. OPTIMAL SOLUTION  

Next, we shall find  and t, 0    t, such that expected profit per unit time is maximized per 

unit time as follows:  

                                                                                              (6)   

Where  

A(   

Assume that the optimal solution of (6) exists and let ( ,  ) be its optimal solution.  

To find the maximum of function A, we first note that  

                                (7)  

Let z = t y in the second term of the right-hand side, then  

                        (8)  

And using the Leibnitz's rule  

     

                                                                      (9)  

Then, by (8) and (9), the partial derivatives of A( ,t) are  
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    < 0              (10)  

; by (10)  

  

)                                                                                                   (11)  

where g is defined by     

g + k  

If  , then by (10) we have , and hence (  , t), t  , is not an optimal solution  

of (6). Therefore, we can rewrite (6) as follows:  

                                                      (12)  

From (12), we may assume  in the following statement. From (10), we have   > 0, 

and < 0,  and hence for each t there exists unique value, denoted by  ̅(t), satisfying  

= 0 and   =A(  ,t)                                                         (13)  

From (10) and (13), we may get  as follows:  

( )  (  )

  i.e.,  

t                                                                (14)  

Let =  (̅ ) be the inverse function of =  , then by (14), we have  

   

> 0                                                                                 (15)  

This means that the vertical distance [ ̅( ) ] from the point (  , ̅(  )) to line t , is strict  

increasing on .                                                                                                                   (16)  

Since by (14),  > 0 and, by assumption,  (w) is a decreasing function of w, we have  

> 0.                                                                                                             (17)  

Therefore, the graph of the function t = (  )can be shown as figure 1.  
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By (12) and (13), we have:  

                                      (18)  

Together with (10), (11) and (13), it yields  

    )   

     )                (19)  

And hence,  

      )                                                                      (20) 

Given , it is valid that the function g appearing in (19):  

        g                                                            (21)  

is strict decreasing of t, with the greatest lower bound:  

                   (22)  

and the least upper bound:  

                                      (23)  

From (21) and (22), we have the following properties:  

Given , the inequality , holds if and only if there exists unique  

value, denoted by  ̂( ), satisfying g(  ,  (  ))=0, i.e.,  
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     )                         (24)  

Note that (12), (20), (22) and (23) yield that  

                                                                                   (25)  

Differentiating (24) with respect to , it yields  

  λ  =0,  

and hence  

         < 0.                                                                          (26)  

This means that the vertical distance [ ̂(  ) ] from the point ( ,  (  )) to the line t  , is strict  

decreasing on .                                                                                                                     (27)  

  

From (11) and (27), it is valid that the curve t =  ̂( ) and the curve t = (  ) intersects at one and 

only one point, denoted by B, is shown in Figure 3.  

Together with Figure 1 and Figure 2, it yields that:  
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Using (18) and the following properties:  

1. if  ( ,  (̅ ))    (c.f. Figure 3), then by (15) and (19)  

             0,                                                  

2. if  ( ,  (̅ ))    (c.f. Figure 3), then by (15) and (19)  

             )) > 0,                                                  

it can be shown that the coordinate value of B as shown in Figure 3 is indeed the optimal solution of 

(6).  

  

3. CONCLUSION  

As mentioned above, ( , ) is the optimal solution of (6). This means that the total demand is 

 and totol backordered quantity of goods is  . Since  and  are Poisson distributions 

with parameters  and (  -  ), respectively. We also see that the probability that the customer is 

willing to wait is . It is also a good estimate of the fraction of the demand is backordered.  

Thus, the proportion of the customers will wait until t is then . Then we can find the expected 

order quantity of goods and the expected backordered quantity as follows:  

     = E[  ] =                                                                          (28)  

and  

 

                .                                 (29)  

This means that  and  derived from (28) and (29) will maximize the expected profit function 

in (6).  

We can interpret the meaning of  as follows:  

 If we order  at time 0 and reorder at , then  may use up less than  because of the demand 

is random. And, in this case, the backordered quantity of goods will increase. Conversely, if  use 

up greater than , then the backordered quantity of goods will decrease. But, in the long run, the 

expected backordered quantity of goods will be equal to  as in (29).  
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Furthermore, to estimate , we have to know the distribution of W. For this purpose, we first 

define the withdrawal rate  as follows:  

  

      
  

 where =P(W   w).  

In the lifetime study, this is the so-called force of mortality or failure rate (Hogg and Tanis, 

1993), i.e., the instantaneous rate of death when a person is at age w. Here, we call it the force of 

withdrawal or withdrawal rate. Usually, the withdrawal rate is an increasing function of w. In other 

words, instantaneous rate of withdrawal is increasing when waiting time increases. There are some 

distributions that satisfy the condition, such as the Gopertz distribution. However, in the short term 

study, it is also reasonable to assume that the withdrawal rate is constant. In this situation, the  

 

distribution of W that we can choose is then the exponential function, i.e.,  0.  

Here, the only parameter of the exponential distribution, , can be interpreted as the mean time that 

the customer is willing to wait.  

Finally, we see that the special case of this study is = t. And, in this case, the expected profit 

function is then reduced to  

  A(   

It is easy to see that  

      
and  

         

 and 0. Hence, A(  ) has a maximum at  .  

Furthermore, the total quaintites of goods demand in the time interval [0, ] is  , as mentioned 

above,  has a Poisson distribution with parameter , i.e.,  

   E[   

which is the case of (Chen, 2003).  
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