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Abstract  

A deterministic mathematical model for the transmission dynamics of infectious disease with 

immunity loss and relapse was built and analyzed. The model was shown to exhibit two equilibria, 

namely, a disease free equilibrium and an endemic equilibrium. The computated basic reproductive 

number R0  was used to establish that whenever R0 1, the disease free equilibrium is locally 

asymptotically stable and the endemic equilibrium is locally asymptotically stable whenever R0 

1. Furthermore the global stability for the two equilibria was investigated using Lyapunov 

function. The model was simulated numerically to validate the analytical results.  
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1.0  Introduction  

One of the major issues or events that has always attracted the attentions of large numbers of 

individuals worldwide apart from sport is infectious disease which is caused by pathogenic 

organisms such as bacteria, viruses, parasites or fungi (Shah and Gupta,2013; Akinyemi et al., 

2015). Infectious diseases includes malaria, tuberculosis, cholera, AIDS, bird flu, lassa fever, ebola 

and could be transmitted through direct or indirect contact with contaminated body fluid or surface 

most especially through sex, blood transfusion, breast feeding, etc. (Shah and Gupta, 2013; James 

et al., 2015; Nguyen et al., 2015; Adewale et al., 2015; Al- Sheik et al.,2011). The emergence and 

reemergence of infectious diseases such as leprosy, plague, cholera, typhus, yellow fever, small 

pox diphtheria, tuberculosis, measles, ebola, pandemic influenza, severe acute respiratory (SARS), 

bovine tuberculosis, rinderpest, foot-and-mouth and others stated in ( Hethcote et al., 2002; Sahu 

and Dhar, 2015; Safi, 2010), has continuously pose great  challenges and threats to public health 

workers and individuals residing in endemic communities (Sahu and Dhar, 2015) since preventive, 

curative and control measures may not be hundred percent effective. Several other factors that may 

promote the persistence of infectious diseases includes absence of cure (e.g. HIV/AIDS), limited 

access to pharmaceutical interventions, disease induced stigma, poverty, etc. It is notable that 

recovered individuals may have temporal immunity which fades away over time or undergoes 

relapse. Thus capable to trigger disease burden. In 2012, it was published that infectious diseases 

were together responsible for the death of more than 8.7 million people worldwide (Global Health 

Observatory Data Repository, 2012).  



 

 

The socio economic impact of infectious diseases has made nations, health organisations, 

researchers and scientist to be at alert with the view to eradicate or contain its spread. Thus to 

achieve this goal, it becomes imperative to design a framework to determine the optimal threshold 

needed to eradicate the spread of these life threatening diseases.  

It is of great importance to state that in epidemiology, mathematical models  have continously play 

important roles in increasing our understanding on mechanisms that influences the spread of 

infectious diseases ,suggesting the qualitative impact of disease control measures  and forecasting 

disease incidences for both short and long term (Tripathi et al., 2007; Seidu and Makinde, 2014). 

Several epidemic models for infectious disease  transmission dynamics  with immunity loss are 

found in (Moghadas and Gumel,2003; Adda and Bichara,2012; Li et al.,1999, Peralta et al., 2015) 

while those with relapse are found in (Tudor, 1990; Blower, 2004;Van der Driessche et al.,2007a; 

Van der Driessche et al.,2007b).   

The aim of this paper is to design and rigorously analyze a model that extends and complements 

the ones in (Moreira and Wang,1997; Korobeinikov and Wake,2002;Vargas-De-Leon,2009; 

Vargas-De-Leon,2011; Sajid et al., 2013; Freihat and Handam, 2014; Vargas-De-Leon,2013).  

The rest of this paper is organized as follows: Section 2 presents the model formulation. In Section 

3, equilibria states and stability analysis of the model are presented while Section 4 presents 

numerical simulation and discussion of results. Section 5 concludes the paper.   

2.0  Model Formulation  

A non-linear deterministic model for the transmission dynamics of infectious diseases in the 

presence of immunity loss and relapse is built by dividing the total human population at time t, 

denoted by N t into three disjoint epidemiological subpopulations, which are the susceptible 

populationS t , infected population I t  and the recovered population R t . Thus N t

S t I t R t .  

The following assumptions were considered to construct the model  

1. Individuals are only recruited into the susceptible class.  

2. The studied population varies with time and is homogenous.  

3. Birth rate is not equal to death rate.  

4. The force of infection is expressed as S t I t .  

The model is therefore governed by the following system of non-linear differential equations.  
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(1)  

For convenience, we rewrite S t ,I t ,R t  and N t  as S I R, , and N respectively.  

Table 1: Parameters Description and Hypothetical Values  

Parameters  Symbols  Hypothetical 

Values  

Source  

Recruitment rate    5  Assumed  

Disease  transmission  

coefficient  
  0.001   Sajid  et  al.,  2013;  Freihat 

 and Handam, 2014.  

Natural death rate    0.02  Safiel et al.,2012; Ibrahim et al.,2015.  

Disease induced death rate    0.09  Rahman and Zou, 2012.  

Recovery rate    0.1  Sajid et al., 2013  

Relapse rate    0.02  Assumed  

Immunity loss rate    0.05  Assumed  

Lemma 1: The close set (S I Q R, , ,) 4 :S 

I QR   is positively invariant and  

   

attracting with respect to the system (1) Proof  

 dNdt t 1 e t  by a  

From (1), we note that N and establish that N t( ) N(0)e  

standard 

comparism theorem (Lakshmikantham et al., 1989). N t( ) approaches   ast , thus  

the system (1) 

is positively-invariant and attracting in .Thus the model is mathematically and epidemiologically 

meaningful in  (Hethcote,2000), and it is sufficient to consider solutions in .  

3.0  Equilibria States and Stability Analysis  

The disease free equilibrium of the model is obtained as E0 S*,I*,R* ,0,0   

 



 

 

The stability of E0 can be analyzed by the method of Reproductive Number (R0) which is 

determined by using the next generation method, on system (1) in the form of matrices 

F(nonnegative) and V(non-singular) (Heffernan et al., 2005).Where F denote the new infection 

terms and V the transition term at E0 . Therefore   

  

 

   

The reproduction number is given by 

the spectral radius (the dominant eigenvalue) of the matrix  

FV 1 denoted by (FV 1).Thus  

R0 (FV 1)
K2                 (2)  

KK1 2  

Where K1      and     K2   

The threshold R0 is called the basic reproductive number, which is defined as the average number 

of secondary infections generated by a single infected individual in a totally susceptible 

population.  

The endemic equilibrium of the 

model denoted by E1 

S**,I**,R**  as expressed in 

terms of R0 ,  

Thus establishing the 

following results.  

Proposition 1: If R0 1, then the point E1 does not exist and E1 E0, when R0 1.  

Local Stability:  First we investigate the local stability of the disease free equilibrium E0 .  

Theorem 1: The disease-free equilibrium of system (1) is locally asymptotically stable whenever 

R0 1and unstable otherwise.  

Proof. The variational matrix J E 0  of the system (1) 

corresponding to equilibrium E0 is  
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obtained as    
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equation 

corresponding of J 

E 0  is  f1
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a2 0 where  

a1 K1 K2  
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Expressing a1 and a2 in terms of R0 , with the aid of (2) to have  

a1 K2
2 R0 K K1 2 1 R0  

 

 K2   

a2 K K1 2 1 R0  

Thus by Routh Hurwitz criterion, we conclude that the system (1) is locally asymptotically stable 

sinceai 0 , i 1,2 if and only if R0 1.  

The epidemiological implication of Theorem 1 is that the spread of an infectious disease can be 

effectively controlled in the community (when R0 1) if the initial sizes of the sub-populations of 

the model are in the basin of attraction of the disease-free equilibrium E0 .  

Theorem 2: The endemic equilibrium of system (1) is locally asymptotically stable whenever R0 

1and unstable otherwise.  

Proof. Linearizing the system at E1, to obtain the variational matrix J E 1  as  
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where S** K1 I**  , and K2 R** .  

The characteristics equation of J E 1  is  

f2
3 b2 

2 b1 b0 0  

where  
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It is obvious to note thatb2 and b1 are greater than zero since components of the endemic  

equilibrium are positive provided R0 1. We note that I S** ** R** S** R0 

1
,  

  0  

 

R**  



 

 

R0 thus 

establishing that b0 0 whenever R0 1. Hence concluding the proof since Routh Hurwitz criterion 

is satisfied.  

Theorem 3: The disease-free equilibrium of system (1) is globally asymptotically stable whenever 

R0 1and unstable otherwise.  

Proof. Consider the Lyapunov function  

V1 K I2 R                     (3)  

Differentiating (3) with respect to time to obtain  

V1 K I2 R                     

V1 K2 SI K I 1 R I K R 2               (4)  

Simplifying (4) to get  

  

V1 SK2 K K1 2 I                  (5)  

SinceS , (5) becomes  

 

V1 K K1 2 R0 1 I  

Clearly, V1 0 when R0 1 and V1 0 if and only if I 0. It follows from Lasalle’s Invariance Principle 

(La Salle and Lefschetz,1961), that every solution to the system (1) with initial conditions in  

approaches E0 as t . Thus, since the region  is positively-invariant, the disease free equilibrium 

is globally asymtotically stable in  if R0 1.  

Theorem 4: The endemic equilibrium of system (1) is globally asymptotically stable whenever R0 

1and unstable otherwise.  

Proof. Consider the Lyapunov function  

  

V2 12 S S ** I I** R R ** 2 2 I I** I In** II**  

 ** 2  ** 2        (6)  

2 I** R R R ** R In**R** 2 R R   

  R  



 

 

Differentiating (6) with respect to time to obtain dV2 S S** I I** R R**
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simplify (7) as 
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 Thus, for R0 1,V2 0, where V2 0 holds only when S S**,I I** and R R**. The only largest 

invariant set in S I R, , :V2 0 is the endemic equilibrium. Therefore the endemic 

equilibrium E1is globally asymptotically stable in the interior , by LaSalle’s invariance theorem 

principle (La Salle and Lefschetz,1961).  
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Thus after many tedious algebraic simplifications, we get  

 



 

 

4.0  Numerical Simulation and Discussion  

In this section, some numerical solutions of the model for different initial population sizes is 

presented using the various values of the parameters stated in Table.1 and to validate that these 

solutions are in agreement with the qualitative behaviours of the model obtained in section  

2.Thus ,we choose different initial population sizes such that  the total population, S I R 250 

as follows  

1____S 0 200,I 0 30,R 0 20,  

2____S 0 195,I 0 40,R 0 15,  

3____S 0 183.1,I 0 43.6,R 0 23.3,  

4____S 0 179.38,I 0 60.67,R 0 9.95.  

In Fig.1, the three figures depict the numerical solution curve of the system (1) for 

R0 7.7219 1. Figure 1(a) shows that the population of susceptible individualsS t  at first 

decreases, then it increases and later decreases to approach S**.In figure 1(b), the population  of 

infected individuals I t   decreases at first, then it increases to approach I**.In figure 1(c) the 

population of infective individuals R t increases at first, then decreases and later increases to 

approach R**.We note that the solution curves of these figures tends to the equilibrium E1  for any 

initial values when R0 1. Thus, the system (1) is locally-globally asymptotically stable about E1 

for the aforementioned parameter value.  
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Fig. 1. Time plots of system (1) with different initial conditions for R0 1: (a) Susceptible 

population; (b) Infected Population; (c) Recovered Population.  

  

In Fig.2, the three figures depict the numerical solution curve of the system (1) for 0.0001 and 

R0 0.7722 1.Figure 2(a) shows that the population of susceptible individuals S t   increases 

to approach S* i e. .  250 .In figure 2(b), the population  of infected individuals  

   

I t   decreases to to approach I* ie zero. . .In figure 2(c) the population of recovered 

individuals R t increases at first, then decreases to approach R* ie zero. . .We note that the 

solution curves of these figures tends to the equilibrium E0  for any initial values when R0 1. Thus, 

the system (1) is locally-globally asymptotically stable about E0 for the aforementioned parameter 

value.  
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Fig. 2. Time plots of system (1) with different initial conditions for R0 1: (a) Susceptible 

population; (b) Infected Population; (c) Recovered Population.  

  

5.0  Conclusion  

 A three-dimensional deterministic mathematical model for the transmission dynamics of 

infectious diseases in the presence of relapse and immunity loss is formulated and rigorously 

studied using stability theory of nonlinear system. Some of the main epidemiological and 

mathematical findings are summarized as follows.  

1. The model has a locally disease free equilibrium whenever the associated reproductive number 

R0 is less than unity.  

2. The disease free equilibrium is globally asymptotically stable whenever R0 1.  

3. The endemic equilibrium exist whenever  R0 1 and then locally asymptotically stable.  

4. The model’s endemic equilibrium is globally asymptotically stable whenever R0 1.  
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